Grid-based Asynchronous Migration of Execution
Context in Java Virtual Machines

Gregor von Laszewskj Kazuyuki Shudd, and Yoichi Muraoka

1 Argonne National Laboratory, 9700 S. Cass Ave., ArgonngUIIS.A.
gregor @cs. anl . gov
2 School of Science and Engineering, Waseda University1324ubo, Shinjuku-ku, Tokyo
169-8555, Japafshudoh, nur aoka}@rur aoka. i nf 0. waseda. ac. j p

Abstract. Previous research efforts for building thread migratiostesns have
concentrated on the development of frameworks dealing avitmall local envi-
ronment controlled by a single user. Computational Gridwige the opportu-
nity to utilize a large-scale environment controlled ovifedent organizational
boundaries. Using this class of large-scale computatimsurces as part of a
thread migration system provides a significant challengeipusly not addressed
by this community. In this paper we present a framework thigigrates Grid ser-
vices to enhance the functionality of a thread migrationesys To accommodate
future Grid services, the design of the framework is bothililexand extensible.
Currently, our thread migration system contains Grid sewifor authentication,
registration, lookup, and automatic software installatim the context of dis-
tributed applications executed on a Grid-based infragirac the asynchronous
migration of an execution context can help solve problenth &5 remote exe-
cution, load balancing, and the development of mobile agyeduir prototype is
based on the migration of Java threads, allowing asynclusand heterogeneous
migration of the execution context of the running code.

1 Introduction

Emerging national-scal€omputational Gridinfrastructures are deploying advanced
services beyond those taken for granted in today’s Intefoeexample, authentica-
tion, remote access to computers, resource managemendjractbry services. The
availability of these services represents both an oppitytand a challenge an oppor-
tunity because they enable access to remote resources inaysya challenge: because
the developer of thread migration systems may need to asldmgdementation issues
or even modify existing systems designs. The scientific lprabsolving infrastructure
of the twenty-first century will support the coordinated w§enumerous distributed
heterogeneous components, including advanced netwarkgyters, storage devices,
display devices, and scientific instruments. The tdime Gridis often used to refer
to this emerging infrastructure [5]. NASAs Information Wwer Grid and the NCSA
Alliance’s National Technology Grid are two contemporargjpcts prototyping Grid
systems; both build on a range of technologies, includingynpaiovided by the Globus
project. Globus is a metacomputing toolkit that providesibaervices for security, job
submission, information, and communication.

The availability of a national Grid provides the ability tepoit this infrastructure
with the next generation of parallel programs. Such progradti include mobile code
as an essential tool for allowing such access enabled throabile agentsMobile
agents are programs that can migrate between hosts in amkdvdsrid), in order to
find places of their own choosing. An essential part for dgielg mobile agent sys-
tems is to save the state of the running program before amsported to the new host,
and restored, allowing the program to continue where itdéftMobile-agent systems
differ from process-migration systems in that the agentgenwehen they choose, typi-
cally through ago statement, whereas in a process-migration system thensgsteides
when and where to move the running process (typically torfz@aCPU load) [9]. In
an Internet-based environment mobile agents provide actefé choice for many ap-
plications as outlined in [11]. Furthermore, this applis®do Grid-based applications.
Advantages include improvements in latency and bandwititlient-server applica-
tions and reduction in vulnerability to network disconneit Although not all Grid ap-
plications will need mobile agents, many other applicaiasill find mobile agents an
effective implementation technique for all or part of thisisks. The migration system
we introduce in this paper is able to support mobile agemgedisas process-migration
systems, making it an ideal candidate for applicationsgusiigration based on the
application as well as system requirements.

The rest of the paper is structured as follows. In the firstywarintroduce the thread
migration system MOBA. In the second part we describe theresions that allow the
thread migration system to be used in a Grid-based envirohrirethe third part we
present initial performance results with the MOBA systene.&¥nclude the paper with
a summary of lessons learned and a look at future activities.

2 TheThread Migration System MOBA

This paper describes the development of a Grid-based thregichtion system. We
based our prototype system on the thread migration systerBAj@lthough many of
the services needed to implement such a framework can bebysettier implementa-
tions.

The nameMOBA is derived fromMOBIle Agents, since this system was initially
applied to the context of mobile agents [17][22][14][15¢Wrtheless, MOBA can also
be applied to other computer science—related problemsasutire remote execution of
jobs [4][8][3]. The advantages of MOBA are threefold:

1. Support for asynchronous migration. Thread migration can be carried out with-
out the awareness of the running code. Thus, migration alkwtities outside the
migrating thread to initiate the migration. Examples foe thse of asynchronous
migration are global job schedulers that attempt to baléwees among machines.
The program developer has the clear advantage that minfmabes to the original
threaded code are necessary to include sophisticatedtinigstrategies.

2. Support for heterogeneous migr ation. Thread migration in our system is allowed
between MOBA processes executed on platforms with diftevparating systems.
This feature makes it very attractive for use in a Grid-basadronment, which is
by nature built out of a large number of heterogeneous coimgpabmponents.

MOBA Place MOBA Place
4

MOBA Central Server

Ve

User
System

MOBA
Threads

MOBA
Threads

[0

Schedulel Schedulel

Fig. 1. The MOBA system components include MOBA places and a MOBAreégrerver. Each
component has a set of subcomponents that allow thread tinigizetween MOBA places.

3. Support for the execution of native code aspart of the migrating thread. While
considering a thread migration system for Grid-based enwirents, it is advanta-
geous to enable the execution of native code as part of thralbseategy to support
a large and expensive code base, such as in scientific progranenvironments.
MOBA will, in the near future, provide this capability. Forare information on
this subject we refer the interested reader to [17].

21 MOBA System Components

MOBA is based on a set of components that are illustratedgari1l. Next, we explain
the functionality of the various components:

Place. Threads are created and executed inMi@BA placecomponent. Here they re-
ceive external messages to move or decide on their own to meoeifferent place
component. A MOBA place accesses a set of MOBA system conmiersich as man-
ager, shared-memory, registry, and security. Each commdias a unique functionality
within the MOBA framework.

Manager. A single point of control is used to provide the control ofreig and shut-
down of the various component processes. The manager al@asser to get and set
the environment for the respective processes.

Shared Memory: This component shares the data between threads.

Registry: The registry maintains necessary information — both sttt dynamic —
about all the MOBA components and the system resources.fifioignation includes
the OS name and version, installed software, machine ati®sb and the load on the
machines.

Security: The security component provides network-transparentraragiing inter-
faces for access control to all the MOBA components.

Scheduler: A MOBA place has access to user-defined components thatddrelex-
ecution and scheduling of threads. The scheduling stratagybe provided through a
custom policy developed by the user.

2.2 Programming Interface

We have designed the programming interface to MOBA on thecjpie of simplicity.
One advantage in using MOBA is the availability of a useefdly programming in-
terface. For example, with only one statement, the progranwan instruct a thread to
migrate; thus, only a few changes to the original code areswxy in order to aug-
ment an existent thread-based code to include thread raigrdio enable movability
of a thread, we instantiate a thread by using MuaThr ead class instead of the
normal Javarhr ead class. Specifically, th&bbaThr ead class includes a method,
calledgoTo, that allows the migration of a thread to another machilrecontrast to
other mobile agent systems for Java [10][12][6], programsmising MOBA can enable
thread migration with minor code modifications.

An important feature of MOBA is that migration can be ordered only by the
migrant but also by entities outside the migrant. Such iestiinclude even threads
that are running in the context of another user. In this ctsestatement to migrate
is included not in the migrant's code but in the thread thguests the move into its
own execution context. To distinguish this action fromgfodo, we have provided the
methodmoveTo.

2.3 Implementation

MOBA is based on a specialized version of the Java JustiimeTJIT) interpreter.
It is implemented as a plug-in to the Java Virtual MachineN)\provided by Sun
Microsystems. Although MOBA is mostly written in Java, a $insat of C functions
enables efficient access to perform reflection and to obtamatl information such
as the stack frames within the virtual machine. Currentig, $ystem is supported on
operating systems on which the Sun’s JDK 1.1.x is ported. A @dVOBA based on
JDK 1.2.xis currently under investigation. Our systemwa#idneterogeneous migration
[19] by handling the execution context in JVM rather than opaaticular processor
or in an operating system. Thus, threads in our system carataipetween JVMs on
different platforms.

2.4 Organization of the Migration Facilities

To facilitate migration within our system, we designed MO8#a layered architecture.
The migration facilities of MOBA include introspection, jebt marshaling, thread ex-
ternalization, and thread migration. Each of these féedlits supported and accessed
through a library. The relationship and dependency of thgration facilities are de-
picted in Figure 2. The introspection library provides theg function as the reflection
library that is part of the standard library of Java. Sintylanbject marshaling provides
the function of serialization, and thread externalizatiamslates a state of the running
thread to a byte stream.

The steps to translate a thread to a byte stream are sumnohariggure 3. In the
first step, the attributes of the thread are translated. &ttdbutes include the name
of the thread and thread priority. In the second step, akbatbjthat are reachable from

the thread object are marshaled. Objects that are bouna:tdefdcriptors or other lo-
cal resources are excluded from a migration. In the final, $kepexecution context is
serialized. Since a context consists of contents of staskds generated by a chain of
method invocations, the externalizer follows the chaimfiader frames to newer ones
and serializes the contents of the frames. A frame is loaattatie stack in a JVM and
contains the state of a calling method. The state consistpaigram counter, operands
to the method, local variables, and elements on the stack,a&avhich is serialized in
machine-independent form.

Together the facilities for externalizing threads and perfing thread migration
enabled us to design the components necessary for the MO&Amsyand to enhance
the JIT compiler in order to allow asynchronous migration.

Thread

Step 1: Serialize Attributes Step 2:
- Serialize Reachable objects
name, priority ‘ from the thread

Step 3: Serialize Stack Frames *%_order Q Q
. — —

Class and method name
PC to return (in offset)
Operand stack top
Last-executed PC

Local variables

Stack

Moba

Thread
] Migration

Thread
Externalizatio

bject
Marshalling

Introspection

Java Virtual Machine C

. .

Fig. 2. Organization of MOBA thread migrationrig. 3. Procedure to externalize a thread in
facilities and their dependencies. MOBA.

2.5 Design Issuesof Thread Migration in JVMs

In designing our thread migration system, we faced sevéalenges. Here we focus
on five.

Nonpreemptive Schedulindn order to enable the migration of the execution context,
the migratory thread must be suspended migration safe pointSuch migration safe
points are defined within the execution of the JVM wheneveriih a consistent state.
Furthermore, asynchronous migration within the MOBA systequires nonpreemp-
tive scheduling of Java threads to prevent threads fromgbsispended at a not-safe
point. Depending on the underlying (preemptive or nonprgtem) thread scheduling
system used in the JVM, MOBA supports either asynchronoasaperative migration
(that is, the migratory thread determines itself the dasitom). The availability of green
threads will allow us to provide asynchronous migration.

Native Code SupportMost JVMs have a JIT runtime compiler that translates bydeco
to the processors native code at runtime. To enable heteeogs migration, a machine-
independent representation of execution context is requidnfortunately, most exist-
ing JIT compilers do not preserve a program counter on bgeecdhich is needed to
reach a migration safe point. Only the program counter oftiteve code execution can
be obtained by an existing JIT compiler. Fortunately, StiusSpot VM [18] allows the
execution context on bytecode to be captured during theutixecof the generated na-
tive code since capturing the program counter on bytecodisgsused for its dynamic
deoptimization.

We are developing an enhanced version of the JIT compiléctiecks, during the
execution of native code, a flag indicating whether the retjiee capturing the context
can be performed. This polling may have some cost in termsdbpnance, but we
expect any decrease in performance to be small.

Selective Migration.In the most primitive migration system all objects reackdbdm
the thread object are marshaled and replicated on the dgstirof the migration. This
approach may cause problems related to limitations ocguwhiming the access of sys-
tem resources as documented in [17]. Selective migratioy Imeaable to overcome
these problems, but the implementation is challengingumzae must develop an al-
gorithm determining the objects to be transferred. Addity, the migration system
must cooperate with a distributed object system, enabéntpte reference and remote
operation. Specifically, since the migrated thread musinaficcess to the remaining
objects within the distributed object system, it must bétligintegrated within the
JVM. It must allow the interchange of a local references amdraote references to
support remote array access, field access, transpareateepént of a local object with
a remote object, and so forth. Since no distributed objestesy implemented in Java
(for example, Java RMI, Voyager, HORB, and many implemémnatof CORBA) sat-
isfies these requirements, we have developed a distribbjedtsystem supported by
the JIT compiler shuJIT [16] to provide these capabilities.

Marshaling Objects Tied to the Local Resour@ecommon problem in object migra-
tion systems is how to maintain objects that have some oal&bi resources specific to,
say, a machine. Since MOBA does not allow to access objeatgdkide in a remote

machine directly, it must copy or migrate the objects to th®@BA place issuing the

request. Objects that depend on local resources (such afdilsatket descriptors) are
not moved within MOBA, but remain at the original fixed loaati[8][13].

Types of Values on the JVM Stadk. order to migrate an object from one machine to
another, it is important to determine the type of the loc@otwvariables. Unfortunately,
Sun’s JVM does not provide a type stack operating in par@itie value stack, such as
the Sumatra interpreter [1]. Local variables and operaftiseocalled method stay on
the stack. The values may be 32-bit or 64-bitimmediate wadueeferences to objects.
It is difficult to distinguish the types only by their values.

With a JVM like Sun’s, we have either to infer the type from ttadue or to deter-
mine the type by a data flow analysis that traces the byteddtie method (like a byte-
code verifier). Since tracing bytecode to determine typesiisputationally expensive,

we developed a version of MOBA that infers the type from thie&aNevertheless, we
recently determined that this capability is not sufficiendbtain a perfect inference and
validation method. Thus, we are developing a modified JIT mi@nthat will provide
stack frame maps [2] as part of Sun’s ResearchVM.

3 Moba/G Service Requirements

The thread migration system MOBA introduced in the precgdiections is used as a
basis for a Grid-enhanced version which we will call MOBA/Refore we describe
the MOBA/G system in more detail, we describe a simple Grilaced scenario to
outline our intentions for a Grid-based MOBA framework sEjiwe have to determine
a subset of compute resources on which our MOBA system canxdmued. To do
so, we query the Globus Metacomputing Directory Service @)1vhile looking for
compute resources on which Globus and the appropriate JdweYsions are installed
and on which we have an account. Once we have identified atseftebthe machines
returned by this query for the execution of the MOBA systera,tvansfer the neces-
sary code base to the machine (if it is not already instalede). Then we start the
MOBA places and register each MOBA place within the MDS. Thenmunication
between the MOBA places is performed in a secure fashionsmtily the application
user can decrypt the messages exchanged between them -Bdtzenting algorithm is
plugged into the running MOBA system that allows us to executr thread-based pro-
gram rapidly in the dynamically maintained MOBA places. iDgrthe execution of our
program we detect that a MOBA place is not responding. Sire&ave designed our
program with check-pointing, we are able to start new MOB&Acpk on underutilized
resources and to restart the failed threads on them. Our M@#Aication finishes and
deregisters from the Grid environment.

To derive such a version, we have tried to ask ourselvesaayaestions:

1. What existent Grid services can be used by MOBA to enhaneanctionality?
2. What new Grid services are needed to provide a Grid-baseBAksystem?
3. Are any technological or implementation issues prewerttie integration?

To answer the first two questions, we identified that the ¥alhy services will be
needed to enhance the functionality of MOBA in a Grid-basadrenment:

Resource L ocation and Monitoring Services. A resource location service is used to
determine possible compute nodes on which a MOBA place caxbeuted. A
monitoring service is used to observe the state and statileddrid environment
to help in scheduling the threads in the Grid environmenb#lination of Globus
services can be used to implement them.

Authentication and Authorization Service. The existent security componentin MOBA
is based on a simple centralized maintenance based on ussunas and user
groups known in a typical UNIX system. This security companis not strong
enough to support the increased security requirements iidab@sed environment.
The Globus project, however, provides a sophisticatedrggdnfrastructure that

can be used by MOBA. Authentication can be achieved with treept of pub-
lic keys. This security infrastructure can be used to augmemy of the MOBA
components, such as shared memory and the scheduler.

Installation and Execution Service. Once a computational resource has been discov-
ered, an installation service is used to install a MOBA planet and to start the
MOBA services. This is a significant enhancement to the 0alglIOBA architec-
ture as it allows the shift from a static to a dynamic pool sfnerces. Our intention
is to extend a component in the Globus toolkit to meet theiapeeeds of MOBA.

Secure Communication Service. Objects in MOBA are exchanged over the I1IOP pro-
tocol. One possibility is to use commercial enhancementthfosecure exchange
of messages between different places. Another solutiom iistégrate the Globus
security infrastructure. The Globus project has initisaedndependent project in-
vestigating the development of a CORBA framework using aigcenhanced
version of 1IOP.

The services above can be based on a set of existing Grictesipiovided by the
Globus project (compare Table 1). For the integration of MC#d Globus we need
consider only those services and components that increadarictionality of MOBA
within a Grid-based environment.

Table 1. The Globus services that are used to build the MOBA/G threlgdation system within
a Grid-based environment. Services that are not availatheiinitial MOBA system are indcated
with e,

MOBA/G Service Service Globus Component
MOBA Place startup Resource ManaggsRAM
ment
MOBA Object migration Communication |GlobuslO
e Secure Communication, Authentic8ecurity GSlI
tion, Secure component startup
MOBA registry Information MDS
e Monitoring Health and Status |HBM, NWS
e Remote Installation, Data ReplicatigdRemote Data AgGGASS
cess

Before we explain in more detail the integration of each & flervices into the
MOBA system, we point out that many of the services are aduless Java through the
Java CoG Kit. The Java CoG Kit [20][21] not only allows acciesthe Globus services,
but also provides the benefit of using the Java frameworkagtbgramming model.
Thus, it is possible to cast the services as JavaBenas aseé tihe sophisticated event
and thread models as used in the programs to support the M®BAplementation.
The relationship between Globus, the Java CoG Kit, and M@Bahbased on a layered
architecture as depicted in Figure 4.

User Application

o=Argonne National
Laboratory

Operating System

F o=Waseda
University

service=mobaPlace

Health &
Status
Resource
Managment
Communication
Infomation
Security
Remote Data
Access

Fig.5. The organizational directory tree of a
Fig.4. The layered architecture of MOBA/Gdistributed MOBA/G system between two or-
The Java CoG Kit is used to access the variaganizations using three compute resources (hn)
Globus Services. for running MOBA places.

3.1 Grid-based Registration Service

One of the problems a Grid-based application faces is tdifgehe resources on which
the application is executed. The Metacomputing Directasvige enables Grid appli-
cation developers and users to register their servicestw@iMDS. The Grid-based
information service could be used in several ways:

1. The existing MOBA central registry could register itssgnce within the MDS.
Thus all MOBA services would still interact with the origifdOBA service. The ad-
vantage of including the MOBA registry within the MDS is thmatltiple MOBA places
could be started with multiple MOBA registries, and eachtd places could easily
locate the necessary information from the MDS in order taupethe communication
with the appropriate MOBA registry.

2. The information that is usually contained within the MOB&gistry could be
stored as LDAP objects within the distributed MDS. Thus ftirectionality of the orig-
inal MOBA registry could be replaced with a distributed stgi based on the MDS
functionality.

3. The strategies introduced in (1) and (2) could be mixedeniigistering multiple
enhanced MOBA registries. These enhanced registries walldd the exchange of
information between each other and thus function in a thsteid fashion.

Which of the methods introduced above is used depends ompthieaion. Appli-
cations with high throughput demand but few MOBA places afécently supported
by the original MOBA registry. Applications that have a largumber of MOBA places
but do not have high demands on the throughput benefit froniah déstributed reg-
istry in the MDS. Applications that fall between these céssbenefit from a modified
MOBA distributed registry.

We emphasize that a distributed Grid-based informatiomicemust be able to
deal in most cases with organizational boundaries (Figirélb of the MDS-based
solutions discussed above provide this nontrivial ability

3.2 Grid-based Installation Service

In a Grid environment we foresee the following two possdiigiti for the installation of
MOBA: (1) MOBA and Globus are already installed on the systana hence we do not
have to do anything; and (2) we have to identify a suitabletimecon which MOBA
can be installed. The following steps describe such an aatiormstallation process:

1. Retrieve a list of all machines that fulfill the instalt@atirequirements (e.g., Globus,
JDK1.1, a particular OS-version, enough memory, accoumistdch the user has
access, platform-supported green-threads).

2. Select a subset of these machines on which to install MOBA.

3. Use a secure Grid-enabled ftp program to download MOBAniagpropriate in-
stallation space, and uncompress the distribution in fase.

4. Configure MOBA while using the provided auto-configurégcand complete the
installation process.

5. Test the configuration, and, if successful, report andstegthe availability of
MOBA on the machine.

3.3 Grid-based Startup Service

Once MOBA is installed on a compute resource and a user detidein a MOBA
place on it, it has to be started together with all the otherBAGervices to enable a
MOBA system. The following steps are performed in order tedo

1. Obtain the authentication through the Globus Securityiee to access the appro-
priate compute resource.

2. List all the machines on which a user can start a MOBA place.

3. For each compute resource in the list, start MOBA throbghlava CoG interface
to the Globus remote job startup service.

Depending on the way the registry service is run, additistegbs may be needed to
start it or to register an already running registry withie MDS.

3.4 Authentication and Authorization Service

In contrast to the existing MOBA security system, the Graséd security service is far
more sophisticated and flexible. It is based on GSI and allotegration with public
keys as well as with Kerberos. First, the user must authatietio the system. Using this
Grid-based single-sign on security service allows the tsgain access to all the re-
sources in the Grid without logging onto the various machimethe Grid environment
on which the user has accounts, with potential different nsenes and passwords.
Once authenticated, the user can submit remote job redhsstre executed with the
appropriate security authorization for the remote machimé¢his way a user can ac-
cess remote files, create threads in a MOBA place, and mitieg migration of threads
between MOBA places.

3.5 Secure Communication Service

The secure communication can be enabled while using theuSlGdibrary and send-
ing messages from one Globus machine to another. This seallewvs one to send
any serializable object or simple message (e.g., threachtivg, class file transfer, and
commands to the MOBA command interpreter) to other MOBA g@éaexecuted under
Globus-enabled machines.

4 Conclusion

We have designed and implemented migration system for dagads as a plug-in to
an existing JVM that supports asynchronous migration otetien context. As part

of this paper we discussed various issues, such as whetfgetobeachable from the
migrant should be moved, how the types of values in the stankoe identified, how

compatibility with JIT compilers can be achieved, and howtesn resources tied to
moving objects should be handled. As a result of this anglyge are designing a JIT
compiler that improves our current prototype. It will suppasynchronous and het-
erogeneous migration with execution of native code. Thigalnétep to such a system
is already achieved because we have already implementesréoaiied object system
based on the JIT compiler to support selective migratioth@lgh this is an achieve-
ment by itself, we have enhanced our vision to include thergimg Grid infrastructure.

Based on the availability of mature services provided asqfahe Grid infrastructure,

we have modified our design to include significant changelersystem architecture.
Additionally, we have identified services that can be usedtner Grid application

developers. We feel that the integration of a thread mignasiystem in a Grid-based
environment has helped us to shape future activities in tice €@@mmunity, as well as

to make improvements in the thread migration system.

Acknowledgments

This work was supported by the Research for the Future (Ripfégram launched

by Japan Society for the Promotion of Science (JSPS) andetlbg the Japanese
government. The work performed by Gregor von Laszewski weak supported by the
Mathematical, Information, and Computational Scienceiddiwi subprogram of the

Office of Advanced Scientific Computing Research, U.S. Dpant of Energy, under

Contract W-31-109-Eng-38. Globus research and developmsupported by DARPA,

DOE, and NSF.

References

1. Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatemguage for resource-aware
mobile programs. In J. Vitek and C. Tschudin, editdvibile Object System$Springer
Verlag Lecture Notes in Computer Science, 1997.

2. Ole Agesen. GC points in a threaded environment. TechRigport SMLI TR-98-70, Sun
Microsystems, Inc., December 1998. http://www.sun.ces#garch/jtech/pubs/.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bozhidar Dimitrov and Vernon Rego. Arachne: A portablee#ius system supporting mi-
grant threads on heterogeneous network fartSEE Transaction on Parallel and Dis-
tributed System®9(5):459-469, May 1998.

. M. Rasit Eskicioglu. Design Issues of Process Migrati€acilities in Distributed Sys-

tem. IEEE Technical Comittee on Operating Systems News|et{@):3—-13, Winter 1989.
Reprinted inScheduling and Load Balancing in Parallel and Distributegstems IEEE
Computer Society Press.

. |. Foster and C. Kesselman, editoffie Grid: Blueprint for a Future Computing Infrastruc-

ture. Morgan Kaufmann, 1998.

. General Magic, Inc. Odyssey information. http://wwwgegic.com/technology/odyssey.html.
. Satoshi Hirano. HORB: Distributed execution of Java paots. InProceedings of World

Wide Computing and Its Applicationslarch 1997.

. Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Blake-Grained Mobility in the

Emerald SystemACM Transaction on Computer Syster6i€l):109-133, February 1988.

. David Kotz and Robert S. Gray. Mobile agents and the futifitee internet ACM Operating

Systems Review3(3):7-13, August 1999.

Danny Lange and Mitsuru OshimRrogramming and Deploying Java Mobile Agents with
Aglets Addison Wesley Longman, Inc., 1998.

Danny B. Lange and Mitsuru Oshima. Seven good reasomsdbile agentsCommunica-
tions of the ACM42(3):88—-89, March 1999.

ObjectSpace, Inc. Voyager. http://www.objectspama/products/Voyager/.

M. Ranganathan, Anurag Acharya, Shamik Sharma, andS&itzl Network-aware mobile
programs. IrProceedings of USENIX'9Danuary 1997.

Tatsuro Sekiguchi, Hidehiko Masuhara, and Akinori Yawea. A simple extension of Java
language for controllable transparent migration and ittgide implementation. I18pringer
Lecture Notes in Computer Science for International Canfee on Coordination Models
and Languages(Coordination99)999.

Tatsurou Sekiguchi. JavaGo manual, 1998. http:/Mehsiu-tokyo.ac.jp/amo/JavaGo/doc/.
Kazuyuki SHUDO. shuJIT—JIT compiler for Sun JVM/x86, 989
http://www.shudo.net/jit/.

Kazuyuki Shudo and Yoichi Muraoka. Noncooperative Migm of Execution Context in
Java Virtual Machines. IRroc. of the First Annual Workshop on Java for High-Perfornoa
Computing (in conjunction with ACM ICS'99Rhodes, Greece, June 1999.

Inc. Sun Microsystems. The Java HotSpot performanceinengrchitecture.
http://www.javasoft.com/products/hotspot/ whitepalpten|.

Marvin M. Theimer and Barry Hayes. Heterogeneous Peogkgration by Recompilation.
In Proc. IEEE 11th International Conference on Distributedn@uuting Systemgages 18—
25, 1991. Reprinted iBcheduling and Load Balancing in Parallel and Distributggt®ms
IEEE Computer Society Press.

Gregor von Laszewski and lan Foster. Grid Infrastrigctor Support Science Portals for
Large Scale Instruments. IRroc. of the Workshop Distributed Computing on the Web
(DCW), pages 1-16, Rostock, June 1999. University of Rostockn@ey.

Gregor von Laszewski, lan Foster, Jarek Gawor, WarreithSrand Steve Tuecke.
CoG Kits: A Bridge between Commodity Distributed Computiagd High-Performance
Grids. InACM 2000 Java Grande Conferencgan Francisco, California, June 3-4 2000.
http://www.extreme.indiana.edu/java00.

James E. Whité&lelescript Technology: The Foundation of the Electroniacké¢place Gen-
eral Magic, Inc., 1994.

Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributeoj€zt Model for the Java System.
In The Second Conference on Object—Oriented Technology atenSy (COOTS) Proceed-
ings pages 219-231, 1996.

